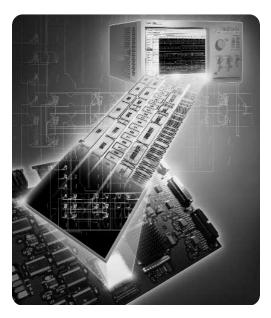


Agilent Technologies B4655A FPGA Dynamic Probe

Data sheet


The Challenge

You rely on the insight a logic analyzer provides to understand the behavior of your FPGA in the context of the surrounding system. A typical approach is to take advantage of the programmability of the FPGA to route internal nodes to a small number of physical pins that a logic analyzer can measure. While this is a very useful approach, it has significant limitations.

- Since pins on the FPGA are typically an expensive resource, there are a relatively small number available for debug. This limits internal visibility (i.e. one pin is required for each internal signal to be probed).
- When different internal signals need to be accessed you must change your design to route these signals to pins. This can be time consuming and can affect the timing of the FPGA design.
- Finally, the process required to map the signal names from the FPGA design to the logic analyzer setup is manual and tedious. When new signals are routed out, the need to manually update these signal names on the logic analyzer takes additional time and is a potential source of confusing errors.

A Better Way

Collaborative development between Agilent and Xilinx have produced a faster and more effective way to use your logic analyzer to debug FPGAs and the surrounding system. The Agilent FPGA dynamic probe, used in conjunction with an Agilent logic analyzer, provides the most effective solution for simple through complex debugging.

Agilent Technologies

Debug your FPGAs faster and more effectively with a logic analyzer

The Agilent FPGA dynamic probe, used in conjunction with an Agilent logic analyzer, provides the most effective solution for debugging problems [simple through complex]. The FPGA dynamic probe lets you:

- View internal activity With a logic analyzer, you are normally limited to measuring signals at the periphery of the FPGA. With the FPGA dynamic probe, you can now access signals internal to the FPGA. You can measure up to 64 internal signals for each external pin dedicated to debug, unlocking visibility into your design than you never had before.
- Make multiple measurements in seconds – Moving probe points internal to an FPGA used to be time consuming. Now, in less than a second you can easily measure a different set of internal signals – without design changes. FPGA timing stays constant when you select new sets of internal signals for probing.
- Leverage the work you did in your design environment – The FPGA dynamic probe is the industry's first tool that maps internal signal names from your FPGA design tool to your logic analyzer. Eliminate unintentional mistakes and save hours of time with this automatic setup of signal and bus names on your logic analyzer.

Figure 1. The FPGA dynamic probe application endows your logic analyzer with unique productivity enhancements to find problems more quickly.

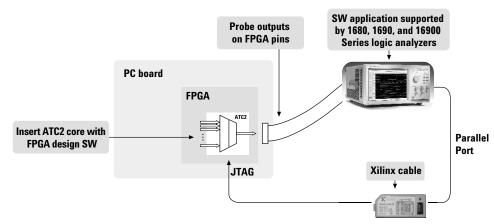


Figure 2. Create a timesaving FPGA measurement system. Insert an ATC2 (Agilent Trace Core) core into your FPGA design. With the application running on your logic analyzer via JTAG you control which group of internal signals to measure.

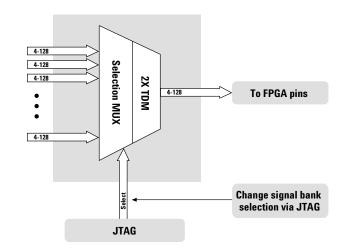


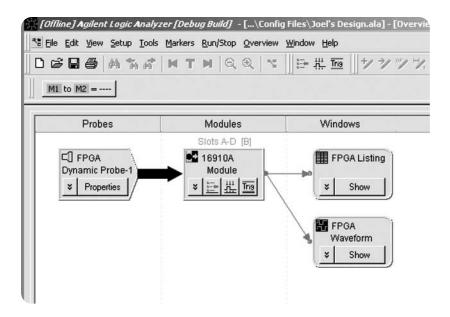
Figure 3. Access up to 64 internal signals for each debug pin. Select cores with 1, 2, 4, 8, 16, or 32 signal banks. Signal banks all have identical width (4 to 128 signals wide) determined by the number of pins you devote for debug. Each pin provides sequential access to 1 signal on every input bank. Using an optional 2X time division compression in state mode, each pin can simultaneously access 2 signals per bank.

A quick tour of the application

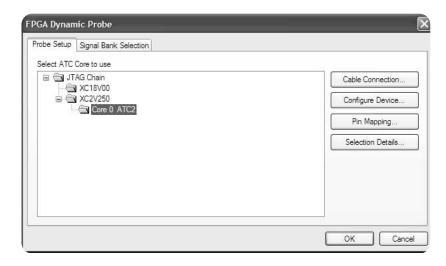
Design step 1: Create the ATC2 core

Use Xilinx Core Inserter to select your ATC2 parameters and to create a debug core that best matches your development needs. Parameters include number of pins, number of signal banks, and the type of measurement (state or timing).

ile Edit Help ☐ ⇔ ⇔													
	filling one			_		_			_				
DEVICE	ATC2												
E-ICON	Pin Selection Parameter		Connections										
UO: ATC2	Pin Selection Parameters Net Connections												
	Capture Mode		Pin Change Mode		Endpoint Type		TDM Rate						
	STATE	¥	INDIVIDUAL PINS	¥.	SINGLE-ENDED	٣	1X -						
	Clock Edge		ATD Pin Count		Signal Banks		Data Width						
	RISING	*	8	٣	32	٣	8						
	had down the Cattle												
	Individual Pin Settin	ngs	Pin	IO Stan			Output	Output	_				
	Pin Name		Loc		Standard		VCCO	Drive					
	ATCK		P13	LVTTL		- 3	3.3	12	-				
	ATD[0]	_	T14	LVTTL		+ 3	3.3	12	-				
	ATD[1]	-	P4	LVTTL		+ 3	3.3	12	_				
	ATD[2]		R4	LVTTL		- 3	3.3	12	-				
	ATD[3]		N5	LVTTL		+ 3	3.3	12	-				
	ATD(4)		P5	LYTTL		-	3.3	12	-				
	and the second s		17626	1.000.00000			1.0	1.2722					

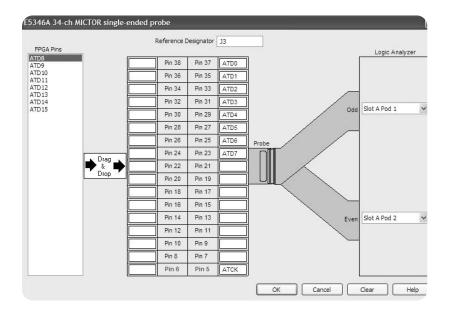

Design step 2: Select groups of signals to probe

Specify banks of internal signals that are potential candidates for logic analysis measurements (using Xilinx Core Inserter).

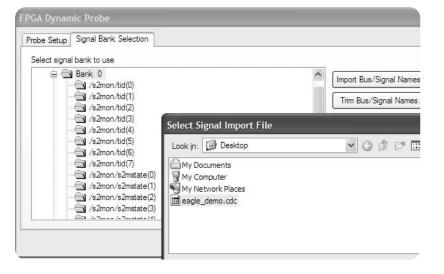

Structure / Nets	CPSM2 [kc			*	Net Sele	ections						
E PICO_K	CPSM2 [kc											
10 10 cm		psm21			Clock Sig	gnals D	ata Sign	als				
🖈 ALL					Channe	4						T
	J_mux [dat	a_bus_mux4]		_	CHO	<u> </u>	szeTop	inicoBiazeC	ore J/PICO J	(CPSM2/instruc	tion(12)	
🛨 arit	metic aro	up (arithmetic pro	cess]		CH1					(CPSM2/instruc		
F data	renisters	Idata register ba	enk1	-	CH2					CPSM2/instruc		
4	1 100631013	road rediater of	ur in i	1	CHt3					CPSM2/instruc		
			1.2		CHt4	(picoB)	szeTop	i/picoBlazeC	ore_i/PiCO_}	CPSM2/instruc	tion(8)	
Net Name 💉	Pattern		*	Filter	CH:5	(picoB)	zeTop	l/picoBiazeC	ore_UPICO_H	(CPSM2/instruc	tion(7)	
Net Name Sourc	e Instance	Source Comp	Base Type		CH:6	/pico8l	azeTop	i/picoBlazeC	ore_i/PiCO_i	(CPSM2/instruc	tion(6)	
out_port[0] picoBl	azeVars i	pico blaze vars			CH7				100			
		pico blaze vars			CH8				_			
out_port[2] picoBl	azeVars_i	pico_blaze_vars	RAM32X1D		DPO		DP1	DP2	DP3	DP4	0	P5
out_port(3) picoBl	azeVars_j	pico_blaze_vars	RAM32X1D	2	DP6	DP7 D	P8 D	P9 DP10	DP11 D	P12 DP13	DP14	DP15
out_port[4] picoBia	azeVars_j	pico_blaze_vars	RAM32X1D									
out_port[5] picoBl	azeVars_i	pico_blaze_vars	RAM32X1D								í.	
out_port[6] picoBl	azeVars_i	pico_blaze_vars	RAM32X1D		Make	Connect	ons		TMO	ve Nets Up		
out_port(7) picoBle	aze∀ars_j	pico_blaze_vars	RAM32X1D	*	Remov	e Connei	tions		↓ Mo	ve Nets Down	1	

Activate FPGA Dynamic Probe

The FPGA dynamic probe icon allows you to control the ATC2 Core and setup the logic analyzer.



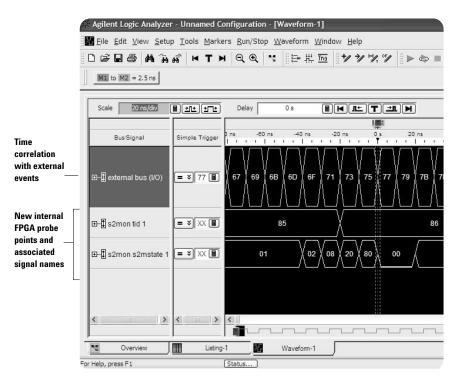
Measurement setup step 1: Establish a connection between the analyzer and the ATC2 core The FPGA dynamic probe application establishes a connection between the logic analyzer and a Xilinx cable. It also determines what devices are on the JTAG scan chain and lets you pick which one you wish to communicate.


Measurement setup step 2: Map FPGA pins

Quickly specify how the FPGA pins (the signal outputs of ATC2) are connected to your logic analyzer. Select your probe type and rapidly provide the information needed for the logic analyzer to automatically track names of signals routed through the ATC2 core.

Measurement setup step 3: Import signal names

Tired of manually entering bus and signal names on your logic analyzer? In seconds, the FPGA dynamic probe application reads a .cdc file produced by Xilinx Core Inserter. The names of signals you measure will now automatically show on your logic analysis interface.


Setup Complete: Make measurements

Quickly change which signal bank is routed to the logic analyzer. A single mouse click tells the ATC2 core to switch to the newly specified signal bank without any impact to the timing of your design. To make measurements throughout your FPGA, change signal banks as often as needed.

FPGA Dynamic Probe Probe Setup Signal Bank Selection Select signal bank to use 🖃 🔄 Core 0 ATC2 Import Bus/Signal Names. 🕀 🔄 Bank 0 🕀 🔄 Bank 1 Trim Bus/Signal Names. 🗄 Bank 2 🕀 🔄 Bank 3 Run Eyefinder 🗄 🔄 Calibration Bank Selected signal bank: Bank 3 Last selected in core Bank 0

Correlate internal FPGA activity with external measurements

With each new selection of an signal bank, the application updates new signal names from your design to the logic analyzer. View internal FPGA activity and time correlate internal FPGA measurements with external events in the surrounding system.

Using the FPGA Dynamic probe, each pin provides access to up to 64 internal signals. The number of debug pins can range from 4 to 128 depending on your needs. When using synchronous cores, one additional pin is used for the clock.

Number of debug pins	Maximum internal signals
4	256
8	512
16	1024
32	2048
· · ·	
128	8192

Agilent B4655A specifications and characteristics

Supported logic analyzers

6

Standalone logic analyzers (version 2.0 or higher software)	1680A/AD, 1681A/AD, 1682A/AD, 1683A/AD 1690A/AD, 1691A/AD, 1692A/AD, 1693A/AD					
Modular logic analysis systems (version 2.0 or higher software)	16900A, 16902A, 16903A with one or more of the following modules: • 16740A, 16741A, 16742A • 16750A/B, 16751A/B, 16752A/B, 16753A, 16754A, 16755A, 16756A • 16910A, 16911A, 16950A A single FPGA dynamic probe license will enable all modules within a 16900 Series system					
Triggering capabilities	Determined by logic analyzer					
Supported Xilinx FPGA families	Virtex-II Pro series, Virtex-II series, Spartan-3 series					
Supported Xilinx cables (required)	Parallel 3 and 4					
Supported probing mechanisms	Soft touch (34-channel and 17-channel), Mictor, Samtec, Flying lead					
FPGA dynamic probe software application						
Maximum number of devices supported on a JTAG scan chain	256					
Maximum number of ATC2 cores supported per FPGA device	15					
Agilent trace core characteristics						
Number of output signals	User definable: Clock line plus 4 to 128 signals in increments of 1 signal					
Signal banks	User definable: 1, 2, 4, 8, 16, or 32					
Modes	State (synchronous) or timing (asynchronous) mode					
Compression	Optional 2X compression in state mode via time division multiplexing. Logic analyzer decompresses the data stream to allow for full triggering and measurement capability.					
FPGA Resource consumption	Approximately 1 slice required per input signal to ATC2 Core Consumes no BUFGs, DCM or Block RAM resources. See resource calculator at www.agilent.com/find/fpga_FAQ					
Compatible design tools						
Xilinx ChipScope Pro (required)	Xilinx Core Inserter Version 6.2i or higher Xilinx Core Generator Version 6.2i or higher					
Xilinx ISE	Version 6.2i or higher					
Synthesis	ATC2 cores produced by Core Generator are compatible with: • Exemplar Leonardo Spectrum • Synopsys Design Compiler • Synopsys Design Compiler II • Synopsys FPGA Express • Synplicity Synplify • Xilinx XST					

Additional information available via the Internet (www.agilent.com/find/FPGA) and www.agilent.com/find/fpga_FAQ.

Ordering information

The Agilent B4655A FPGA dynamic probe includes:

- Entitlement certificate for 1-year node-locked license. A single license supports all modules within a 16900 Series system.
- Entitlement certificate for 1-year software update and support services
- CD with application software

Related Literature

Publication	Description	Agilent pub. number
Agilent Technologies		
16900 Series		
Logic Analysis Systems	Color Brochure	5989-0420EN
Agilent Technologies		
Timing and State Modules		
for the 16900 Series	Data Sheet	5989-0422EN
Probing Solutions for		
Agilent Technologies		
Logic Analyzers	Catalog	5966-4632E
Agilent 1680 and 1690 Series		
Logic Analyzers	Data Sheet	5988-2675EN
LUYIC Allalyzers	Data Sileet	5500-2075EN

For copies of this literature, contact your Agilent representative or visit **www.agilent.com/find/logic**

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect

Quickly choose and use your test equipment solutions with confidence.

Agilent T&M Software and Connectivity

Agilent's Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit **www.agilent.com/find/connectivity** for more information.

For more assistance with your test and measurement needs or to find your local Agilent office go to www.agilent.com/find/assist

Product specifications and descriptions in this document subject to change without notice.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

www.agilent.com/find/logic

By internet, phone, or fax, get assistance with all your test & measurement needs

Online assistance:

www.agilent.com/find/assist

Phone or Fax United States: (tel) 800 829 4444

Canada:

(tel) 877 894 4414 (fax) 905 282 6495

China:

(tel) 800 810 0189 (fax) 800 820 2816

Europe:

(tel) (31 20) 547 2323 (fax) (31 20) 547 2390

Japan:

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Korea:

(tel) (82 2) 2004 5004 (fax) (82 2) 2004 5115

Latin America:

(tel) (305) 269 7500 (fax) (305) 269 7599

Taiwan:

(tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries:

(tel) (65) 6375 8100 (fax) (65) 6836 0252 Email: tm_asia@agilent.com

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2004 Printed in USA July 23, 2004 5989-0423EN